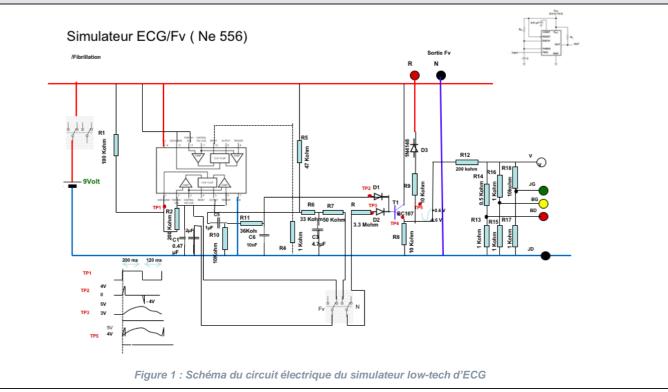


TESTEUR LOW-TECH D'ÉLECTROCARDIOGRAMME (ECG)


MATÉRIEL NÉCESSAIRE :

- 1 boîte de dérivation
- 1 transistor BC 107
- 4 diodes 1N 4148
- 1 circuit intégré NE556
- 1 pile 9 V
- 1 connecteur de pile
- 12 vis de 4 mm
- 1 plaque à trous cuivrés ou pas 2,54 mm face simple
- 5 résistances de 100 K Ω
- 1 résistance de 200 K Ω
- 2 résistances de 47 K Ω
- 1 résistance de 33 K Ω
- 1 résistance de 33 M Ω
- 3 résistances de 10 K Ω
- 6 résistances de 1 K Ω
- 1 résistance de 500 Ω

- 1 Condensateur de 1 µF 25 V
- 1 Condensateur de 2 μF 25 V
- 2 Condensateurs de 4,7 µF 25 V
- 1 Condensateur de 0,47 µF 25 V
- 1 Condensateur de 1 µF 25 V
- 2 interrupteurs doubles
- Étain pour soudure
- · Fer à souder
- 7 cosses à souder
- Perceuse
- · Support circuit intégré
- · 2 fiches bananes mâle et femelle
- · Fil électrique double
- Oscilloscope
- Défibrillateur semi-automatique
- Moniteur avec paramètre ECG ou défibrillateur possédant un écran

DÉROULEMENT DE LA PROCÉDURE DE FABRICATION

1. SCHEMA ÉLECTRIQUE

2. RÉALISATION DU TESTEUR

Première étape

- Percer le couvercle de la boîte en 7 points. (Voir figure 2)
- Placer des cosses à souder sur les 5 vis (1, 2, 3, 4, et 5).
- Visser les 5 points (1, 2, 3, 4 et 5) à l'aide de 5 boulons (les vis sont placées de l'intérieur vers l'extérieur du couvercle).
- Fixer les 2 interrupteurs doubles sur les 2 points (6 et 7) du couvercle.

Figure 2 : Schéma du couvercle de la boîte de dérivation

- Connecter et souder la résistance R13 (1 K Ω) entre les vis **JD** et **BD**.
- Connecter et souder la résistance R14 (500 Ω) entre les vis **BD** et V.
- Connecter et souder la résistance R15 (1 KΩ) entre les vis **JD** et **BG**.
- Connecter et souder la résistance R16 (1 K Ω) entre les vis **BG** et V.
- Connecter et souder la résistance R17 (1 K Ω) entre les vis **JD** et **JG**.
- Connecter et souder la résistance R18 (10 K Ω) entre les vis **JG** et V.
- Connecter et souder la résistance R12 (200 $K\Omega$) sur la vis V.
- A l'aide d'une pince tirer sur les résistances pour vérifier qu'elles sont bien soudées sur la cosse.

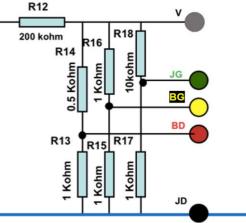


Figure 3 : Schéma de la première partie de la réalisation du simulateur

Pour effectuer les raccordements des composants, toujours se référer au schéma du circuit (figure 1).

Deuxième étape

- Placer une plaque à trous dans la boîte à décade. (Voir figure 4)
- Percer la boîte et la plaque à trous en 3 points.
- Fixer la plaque à trous sur la boîte à l'aide de 3 vis.
- Fixer la pile et son connecteur sur la boîte mécaniquement ou à l'aide d'un fil rigide.

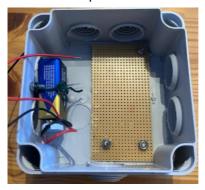


Figure 4 : Schéma de la deuxième partie de la réalisation du simulateur

• Pour la suite, retirer la plaque à trous de la boîte afin de réaliser le montage des composants.

Troisième étape

- Placer le circuit intégré sur le support à circuit puis le positionner sur la plaque à trous, de préférence au milieu de la plaque.
- Souder les 14 pattes du circuit intégré à l'aide d'étain et du fer à souder sur la face métallique de la plaque. (Voir figure 5)
- Évider (c'est-à-dire gratter ou enlever) la partie métallique de la plaque entre chacune des 7 paires de pattes du circuit intégré afin qu'il n'y ait pas de liaison. (Voir figure 5)
- Évider la partie métallique de la plaque au niveau des trois points de fixation de la plaque sur la boîte. (Voir figure 6)

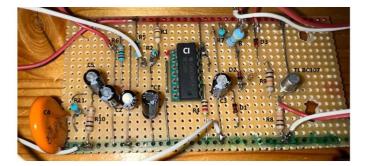
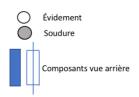



Figure 5 : Schéma de la face des composants et de la face métallique de la plaque à trous

- Placer tous les composants (résistances, condensateurs, diodes et transistor) conformément au schéma du circuit.
 (Voir figures 1 et 5)
- Souder les composants placés précédemment sur la face métallique. Attention à ce qu'elle ne déborde pas sur les autres lignes.

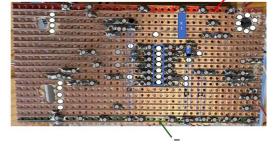
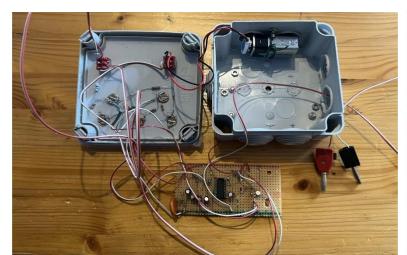



Figure 6 : Schéma de la face métallique et de la vue arrière des composants

Quatrième étape

- A l'aide du connecteur de pile, relier l'interrupteur Marche / Arrêt à la pile.
- A l'aide d'un fil électrique double :
 - O Relier l'interrupteur Marche / Arrêt à la partie + et de la plaque.
 - o Relier les résistances R7 et R à l'interrupteur Normal / Fibrillation.
 - o Relier les condensateurs C1 et C2 à l'interrupteur Normal / Fibrillation.
 - o Relier les 2 bornes de la résistance R8 aux bornes des résistances R12 et R18.
- Dénuder les extrémités de fil double à l'aide d'une pince à dénuder sur 1cm et torsadez les fils dénudés.
- Insérer le fils dans la fiche banane et visser la vis de maintien du câble.
- Relier la fiche femelle à la diode D3 et la fiche mâle à la partie de la plaque.

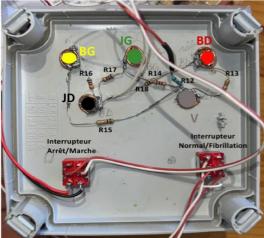


Figure 7 : Schéma de la quatrième partie de la réalisation du simulateur

 Après avoir réalisé le montage de tous les composants et raccordements, placer la plaque dans la boîte de dérivation.

3. MESURES

Vérifications

- A l'aide d'un oscilloscope et en se référant au schéma du circuit figure 1, vérifier que :
 - O Au niveau TP1 de la plaque, vous obtenez un signal similaire à celui du TP1 (Voir figure 8).
 - Au niveau TP2 de la plaque, vous obtenez un signal similaire à celui du TP2 (Voir figure 8).
 - Au niveau TP3 de la plaque, vous obtenez un signal similaire à celui du TP3 (Voir figure 8).
 - o Au niveau TP5 de la plaque, vous obtenez un signal similaire à celui du TP5 (Voir figure 8).

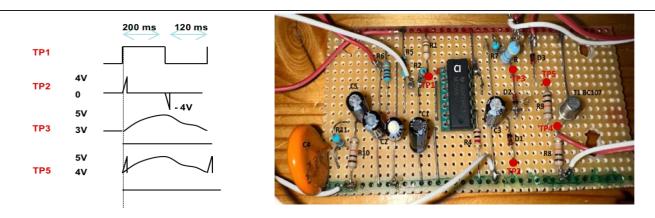
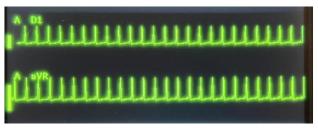
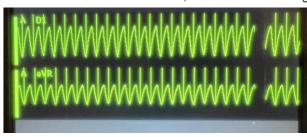



Figure 8 : Schéma des différents signaux du simulateur et de la plaque


Cas 1 : A l'aide d'un moniteur ou d'un défibrillateur avec paramètre ECG

Tests

- Brancher les câbles ECG aux bornes du simulateur.
- Vérifier sur l'écran du moniteur ou du défibrillateur que lorsque le simulateur low-tech d'ECG est en mode normal, vous obtenez un signal sinusal.

• Quand le simulateur low-tech d'ECG est en mode fibrillation, vous obtenez un signal de fibrillation.

Cas 2 : En utilisant un défibrillateur semi-automatique (DSA)

Tests

• Vérifier que lorsque le simulateur low-tech est en mode normal, le DSA ne recommande pas de délivrer un choc et que lorsqu'il est en mode fibrillation, le DSA recommande de délivrer un choc.

Figure 9 : Simulateur low-tech d'ECG Fibrillation / Normal