1. Introduction

1.1 The General Situation

Everyone who knows the technological conditions under which health workers in developing economies are forced to deliver health care services will agree on the need to improve the management of physical assets. Buildings are dilapidated, power and water supply hardly work and most of equipment and vehicles do not function.

Examples from Malawi and Nepal illustrate the situation. In 5 Nepalese rural health facilities, approx. 67% of building components or utilities were rated “poor” in 1994 (meaning totally inadequate; for definition refer to para 2.3) [1]. Seventy-six % of the equipment found in 14 health facilities in Malawi in 1995 was in working condition, which sounds encouraging. But looking into the age of the few items (only 33 per health facility on the average) the picture changes. Seventy-two % had almost reached the anticipated life expectancy or were already obsolete [2]. This phenomenon is caused by something one may dub "Darwin's Principle": the survival of the (few) fittest.

These circumstances contribute to poor health service quality and the frustration of health workers and lead in the end to disgruntled clients. In the past it was mostly the ever-ready donor who stepped in and provided replacement of physical assets. In recent years the donor community has become increasingly hesitant and has begun instead to ask the partner to take care of the maintenance of physical assets... and leaves him alone with this problem. Most developing countries are not in a position to deal with this situation without external technical and financial assistance.

1.2 Funds for Maintenance and Repair

As a rule of thumb approx. 1-2% of the investment cost is needed annually to maintain health buildings. For utilities the figure is around 3% and for equipment, between 4% and 6% [20]. These figures seem to apply in industrialised countries as well [21]. On the average 4% of the total investment value of a health facility is required per year. In reality, in the public health services of most developing economies, expenditures range between 0 and 1%. Another rough indicator is the share of the annual recurrent budget for maintenance. Ten to 20% appear to be acceptable depending on the size and level of a health facility in an developing economy. But for most countries the figure is below 5%. For industrialised countries the figure is much lower, due to high personnel costs [22].

It is unlikely that the governments of many developing economies will be able to bear the required amount on their own, in the foreseeable future. Even if portions of the generated income of autonomous health facilities can be added (in Kenya for example 25%), the financial need for carrying out maintenance services with acceptable efficiency will not be met [23]. Some donors provide maintenance contracts for a couple of years, but are still unable to offer more sustainable solutions.

In view of the meagre resources, one should set priorities in maintenance and repair. It appears from empirical observations that Pareto's Principle can be applied to maintenance costs: Only 30% of the total funds desirable for maintenance would suffice to cover 70% of the problems.
This is because the majority of maintenance and repair jobs are of a trivial nature, as long as a preventive strategy using in-house services is used. It could be shown in a case study in a German hospital that by establishing an in-house service and introducing a preventive maintenance programme for suction pumps, life-cycle costs could be reduced by about 80% [24]. The effect of abandoning a preventive strategy can be dramatic: within 2 years the accountable (billable) income of a governmental service centre in Central America dropped by 103% [26], due to the increased need to carry-out costly repairs. The drop of 103% meant that in the end the health administration had to subsidise the health facilities serviced!

1.3 Motivation of Administrations

As mentioned previously, the public health bureaucracy in the past could more or less rely on donors when replacements were thought necessary. Though these expectations are no longer met as in the past, most administrators still have little motivation to allocate substantial funds. On the one side, this can be explained by the acquisition of a bad habit. On the other side, even a well-meaning hospital secretary may argue that maintenance swallows valuable cash, which he needs for more important goods, such as drugs. The perception of industrial managers about the value of maintenance is sometimes similar [13].

This attitude is understandable, since he never may have come across any documented information on cost efficiency or even on the monetary benefit of rational maintenance systems. This applies equally to the public health systems of industrialised countries. But hardly anyone there would seriously contest the idea of spending money for keeping-up the value of the investments, at least as long as funds are available. In developing economies, permanent monitoring of performance and cost efficiency is needed to encourage health administrations to provide maintenance funds. But, let us not forget, wherever funds are managed, personal interests are not far away. This attitude evidently favours acquiring new equipment instead of maintaining the equipment at hand. And, it is always nice to get the latest models!

In order to avoid excessive and unnecessary influx of new equipment, administrators and health workers need to understand the merits of systematic and preventive maintenance services. This can only be achieved if the quality of such services becomes measurable.

2. Measuring the Quality of Maintenance Services

2.1 Principles

Quality assurance may be described as a cycle consisting of a code of practice (work standards) which receives feedback from a Monitoring & Evaluation (M&E) system backed by an information system. M&E systems use indicators, i.e. criteria which measure progress and success in terms of quality and quantity. M&E in maintaining health equipment is traditionally restricted to looking into the correct application of maintenance procedures and some more or less superficial cost aspects (process indicators). Safety checks of equipment, if performed, can also be regarded as a quality indicator. The latter is more an impact indicator, as e.g. average down-times of equipment. Conclusive cost indicators are virtually non-existent or not applied, but would be highly desirable.

2.2 Process Indicators

Process indicators measure how maintenance work is done, using accepted standards. Important standards refer to

- number and composition of the workforce
- productivity
- compliance to standardised intervention times
• ratio of corrective and preventive works
• correct application of forms and standardised maintenance procedures
• availability of tools and spare parts

Details on indicators related to those standards can be found in a number of general publications [for example 3, 4, 5, 6, 16, 23]. A few publications refer to the specific circumstances in health services [7, 8, 9].

Process indicators are proxy indicators in relation to a result of maintenance activities (impact). They cannot measure effects directly. They only describe the way activities are being carried out. But in a (common) situation, where the development process is too young to provide visible results, these proxies give a good idea about the progress.

2.3 Impact Indicators

Impact refers to an effect which can unmistakably be related to the intervention employed. For example, the number of injection pumps in working condition may not only be influenced by maintenance interventions, but also by the fact that they are rarely used at the health facility observed. Consequently, impact indicators should either address clear cause-effect relationships or be accompanied by observations about the working environment, thus allowing for correct interpretations of the findings. Even this will be difficult to assess with indicators such as "average period of hospitalisation per patient per year" or "number of visits of out-patients necessary for successful treatment". Too many other factors inside and outside the health facility influence these criteria, though undoubtedly, a significant effect can be attributed to maintenance. But it is hard to quantify without excessive effort and resources. Good indicators are

• (average) down-time per year (change in staff must be monitored)
• operating time per year (changes in patient attendance and changes in staff must be monitored)
• satisfaction of the health workers (clients) with maintenance performance using e.g. response times [25] (only applicable if clients have a good understanding of the resources and objectives of their maintenance service)

The first two indicators can only be assessed in a satisfactory way if the health facility has a well developed maintenance information system. Without detailed and reliable records over more than 1 year the results would be questionable. Too often such records are not available. This is why alternatives which need minimal time and resources must be sought, for example an approach that is commonly called "Quick Appraisal". Sometimes this method is viewed with suspicion ("quick and dirty"), because health workers tend to think that a more comprehensive and detailed approach would be preferable. In principle this is true, but tight financial and time budgets force us to look for compromises. We therefore suggest using a quick appraisal method based on standardised quantitative and qualitative questionnaires and checklists: "Physical Assets Management in Health Services in Developing Economies", in short PAD [10, 11]. In this way, also, conditions can be captured which cannot be described statistically but have to be recorded in comparable and cost-effective fashion. PAD is composed of different modules which can be combined or used separately, as the situation demands, in a quick and efficient way.

Among other matters, PAD deals with the maintenance (management) structure ("what does central, regional and district level do about maintenance?"). In addition, the state of physical infrastructure and assets is described ("what does my health facility look like?"):

• buildings, sections, rooms
• utilities, plants
equipment
hygiene, waste disposal

The principle underlying most questionnaires or check lists consists in using a simple valuation with ratings "good", "fair" and "poor". Each form which records a specific part or feature of the physical assets (e.g. "Hygiene") is accompanied by an evaluation key, which defines in detail each rating.

The limitations of the PAD-method are linked to its punctual nature. Though the difference between an initial situation and a later one (min. 6 months) can be assessed with satisfactory precision and reproducibility, the change process itself can hardly be judged. This applies especially to the crucial factor of analysing the cost-effectiveness of maintenance services. Without reliable and specific records about spendings on maintenance and repair (cost centre accounting!) in relation to the operationality and safety of the physical assets maintained, sound economic evaluations are not possible.

2.4 Cost Indicators

The basic question is, what kind of benefit one can expect when investing in maintenance. Predominantly qualitative expectations are connected to an improved quality of health care and safer treatments and even to reducing morbidity and mortality. Many people argue that the monetary aspect is therefore not that important and that one may achieve a limited cost reduction only by making the maintenance system more efficient. In my view there is no reason to believe that rational maintenance cannot produce accountable benefits, too.

Most cost-benefit estimations use rather abstract and indirect methods which do not show the "cash" gained by systematic repair and maintenance [19]. In view of the apparent weakness, a more problem-oriented formula is proposed, the Life Expectancy Related Cost Effectiveness: A general effect of maintaining and repairing physical assets is, trivially enough, the prolongation of their useful life. Increased life expectancy can significantly reduce replacement expenditures [14, 15] - and in the end life-cycle costs [17, 18]. Simplified, this would mean comparing the accomplishable (= efficiently maintained) life expectancy of a physical asset with its life expectancy under poor maintenance conditions. A Delphi study conducted in 1999-2000 [12] showed, that the life of healthcare equipment can be prolonged by a factor two in average. Take for example an electrical washing machine:

maintained life expectancy = 8 years
unmaintained life expectancy = 5 years
re-investment costs approx. US$ 4000 (simple model, approx. 10 kg capacity)

calculated savings per annum = 7.5% of the replacement cost (calculation method in [30])

In other words, the hospital (secretary) should not spend more than 7.5% of the value of that washing machine per year, if it wants to remain "in the black". This should not be too difficult. The maintenance expenditures for such a washing machine should not be higher than 3% (overall costs including personnel). Our immediate objective is to develop a basic list of cost ceilings for the standard equipment of health facilities up to district hospital level as a control instrument. It must be left to the health administrations and maintenance units in the countries to extend, to modify and to develop more precise figures.

It should be noted that relatively high maintenance expenditures shortly after installation and when approaching the end of useful life may occur ("bath-tub effect": expression derived from the graphic presentation of this phenomenon).

During recent years we have investigated the cost effectiveness of maintenance services in three countries, mainly by using the comparative methods. We considered all costs recorded
on working hours, material and transport. The results of some hospitals are surprisingly encouraging. In El Salvador one hospital could increase its cost effectiveness (billable income) between 1994 and 1995 by 177% [derived from 27]. In Senegal one hospital achieved a 65% increase, another one even 446% (1993-94) [derived from 28]. In 3 Jordanian hospitals within two years (1994-95) a cost-benefit relation (maintenance input : savings) of 1: 4.4 to 5.4 could be achieved by almost completely (95%) abandoning outsourcing and introducing in-house maintenance services. The introduction of a preventive strategy leads to an increase of 130% in cost effectiveness. At the same time the availability of operational equipment shot up from 50% to 90% [29].

As encouraging as these figures are, the studies revealed also the weaknesses in some hospitals. In El Salvador two of the three hospitals investigated arrived at 55-77% lesser billable income for the maintenance unit due to poor supervision and by lowering preventive activities. In Senegal one maintenance unit of the three hospitals surveyed increased its losses (billable deficit) in maintenance expenditures by 46%, above all because of extremely poor productivity.

3. Outlook

In 26 developing economies in Asia and Africa more than 25% of health expenditures are contributed by donors. In 8 countries external aid exceeds 50% [23]. This should imply that not only the developing countries but also the donors have genuine interest in promoting technical services focussing on systematised repair and maintenance systems. That this is only the case in some few occasions is caused by the lack of convincing arguments. If one wants to stimulate investing in this sector, evidence is needed that maintenance can really contribute to improving quality and the economy of health care. Performance and cost-benefit indicators are the major elements to creating such evidence.

Eschborn, January 2001

Hans Halbwachs
Division of Health and Population
Deutsche Gesellschaft für technische Zusammenarbeit (GTZ-GmbH)

hans.halbwachs@gtz.de

Note: this article is an updated and abridged version of "The Technical and Financial Impact of Systematic Maintenance and Repair Services within Health Systems in Developing Economies", presentation at IFHE 15th International Conference, Edinburgh, June 1998
Bibliography

